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  Abstract: Microwave chemistry is an emerging area of science mainly focusing on various applica-

tions of microwave energy into chemical processes. Microwave irradiation has enormous potential to 

provide controlled energy directly to the molecules of interest. On the other hand, homogeneous gold 

catalysis has emerged in the last two decades or so as one of the most promising fields in organic and 

organometallic chemistry. Its efficacy has been established many times for the construction of new C 

– X (X = O, N, S, etc.) and C – C bonds under mild reaction conditions. Although a significant num-

ber of reports have appeared in the literature regarding the homogeneous gold-catalyzed organic trans-

formations under microwave conditions, this is the first review article which is going to appear in the 

literature. This mini-review is designed to give an interesting insight into various homogeneous gold-

catalyzed organic reactions under microwave irradiation for the synthesis of a library of electronically 

and structurally diverse and biologically important organic molecules.  
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1. INTRODUCTION 

Microwave chemistry is a promising area of science of 

applying microwave energy to various chemical reactions. 

Current research publications have reported that under cer-

tain conditions, microwave energy can significantly increase 

the rate of product formation of a chemical reaction [1]. The 

enhanced heating rate under microwave-assisted reaction 

conditions leads to improved product yield, higher catalyst 

turnover, milder reaction conditions, and shorter reaction 

times. [2-3]. The reactivity of chemical compounds under 

microwave conditions cannot be explained exclusively by 

the rapid heating of the system, the "microwave effect" is 

assumed to be a synergistic effect of both thermal and non-

thermal effects [4].
 
Since the efficiency of microwave energy 

to trigger rapid heating depends on the properties of different 

compounds, thus reactions can be made selectively and con-

ducted under high pressure without harming the microwave-

transparent reaction vessel. As mentioned earlier, since mi-

crowave heating is highly polarity-dependent, organic reac-

tions can also be regulated by carefully choosing dielectric 

properties of solvents and other reaction contents [5]. Be-

sides, the capability of microwaves to enhance the solubility 

of organic reactants to aqueous media has created an incen-

tive for chemists to develop new methodologies based on 

water as a solvent. Water itself is an ideal and green solvent 

for organic transformations, as it is cheap and easily remov-

able from the organic reaction mixture [6, 7]. 
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On the other hand, homogeneous catalysis relates to cata-

lytic reactions where the catalyst is in the same phase as the 

reactants and it is most important in organic synthesis. This 

set of reactions, involving several diverse carbon-carbon and 

carbon-heteroatom bond-forming reactions and asymmetric 

transformations, is highly demanding synthetic tool for the 

organic chemists today. Nevertheless, in high-throughput 

synthesis, the long reaction times that are often needed for 

complete conversions have restricted the utilization of ho-

mogeneous catalysis. Therefore, efficient and practical mi-

crowave applications are needed not only for the rapid pro-

duction of new chemical compounds but in general to boost-

up the efficiency of homogeneous catalysis. By the mid-

1980s the implementation of microwaves technology was 

well accepted as an effective heating source for organic reac-

tions [8]. Afterward, several reactions have been reported 

where significantly higher reaction rates were observed in 

combinatorial chemistry [9-10]. The use of microwave tech-

nology is not only limited as a fast heating technique, but it 

also has wide applications in biocatalysis [11, 12], biotech-

nology [13-15], medicinal chemistry [16, 17], analytical 

chemistry [18-21], and polymer and material science [22-

24].
 
It is also useful for remote sensing and environmental 

chemistry [25-29]. Generally, very good yields and clean 

reactions were obtained using only small quantities of ener-

gy. A further advantage of using this heating technology is 

the opportunity to employ milder and less toxic reagents and 

solvents. The non-inert-atmospheric conditions and easy 

experimental method of many microwave-assisted reactions 

provide additional utility in chemical synthesis. Many organ-

ic reactions are typically conducted over a few hours using a 

homogeneous/heterogeneous catalyst. One of the most prac-
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tical reasons in an organic reaction using microwave irradia-

tion is to greatly speed up the process from hours to minutes. 

This advantage of microwave-assisted processes has provid-

ed greater efficiency to chemists in studying less kinetically 

favored reactions. 

While gold has the shortest history in catalysis, ignited 

by the discovery of its catalytic activity, it has enjoyed the 

sharpest burst of interest witnessed in the last few decades. 

This was associated with the revealing of an array of new 

reactivities, and thus with the progress of a plethora of new 

transformations. Nowadays, homogeneous gold catalysis is 

already widely used for cross-coupling [30-35], C–H func-

tionalization [36-38], benzannulation [39-42], oxidation [43], 

hydrogenation
 
[44], and several other transformations, be-

ginning with addition, cycloaddition, and cycloisomerization 

[45] reactions involving alkynes and alkenes. Considerable 

progress has also been achieved in the development of high-

ly stereoselective gold-catalyzed reactions for organic trans-

formations [46-53]
 
as well as in total synthesis [54-58].

 
This 

review article is mainly focused to explore the benefits and 

challenges of the area of microwave-assisted homogeneous 

gold catalysis after a brief discussion on microwaves-

assisted reactions and homogeneous gold catalysis.  

2. MICROWAVE-ASSISTED REACTIONS: GENERAL 
APPROACH 

Microwave heating is dependent on the capacity of a giv-

en substance to absorb microwave energy and convert that 

electromagnetic energy into heat [59]. Molecules with a di-

pole moment make an effort to align them with the oscillat-

ing electric field of microwave irradiation, which leads to the 

rotation [60]. One molecule which is rotationally excited by 

incident irradiation will strike the second one, transforming 

rotational energy into translational energy. Thus, a large 

number of molecules are rotationally excited under micro-

wave irradiation, and when they hit other molecules, rotational 

energy is converted into translational energy (i.e,. kinetic en-

ergy), and as a result, heating is detected [61] (Fig. 1). 

 

Conventional Heating Microwave Heating  

Fig. (1). Comparison of microwave heating versus conventional 
heating. 

 

There are some differences between conventional heating 

and microwave-assisted heating. These are: firstly, the heat-

ing or thermal reaction initiates from the surface of material 

only, whereas the microwave-assisted heating or thermal 

reaction starts consistently and concurrently from the surface 

to the bulk of the material. Secondly, under conventional 

heating conditions, the heat transfer needs physical contact 

between the surface of the materials and the vessel but phys-

ical contact between the surface of the materials and the ves-

sel is not necessary under microwave irradiative heating 

conditions. Thirdly, electric or thermal sources are used for 

conventional heating while microwave-assisted heating takes 

place by microwave irradiations. Fourthly, heating of mate-

rials occurs through a thermal conduction mechanism under 

conventional heating conditions as opposed to microwave-

assisted heating, where heating of material involves dielec-

tric polarization of materials. Fifthly, the low heating rate 

was observed employing conventional heating methods in 

contrast to the higher rate of heating under microwave heat-

ing conditions.  

Since microwave heating relies on a molecule's dipole 

moment, polar solvents like dimethylsulfoxide, dimethyl-

formamide, ethanol, and water better transform microwave 

irradiation into heat relative to non-polar solvents like tolu-

ene or hexane. Besides, many other factors are also contrib-

uting to the rapid heating of a substance upon microwave 

irradiation. Factors such as specific heat capacity and the 

heat of vaporization, as well as the depth to which micro-

wave irradiation will reach the sample, may often have a 

greater effect on the heating rate than their corresponding 

dielectric losses. Therefore, all of these variables change as a 

function of temperature, and the heat of vaporization varies 

as a function of pressure.  

Thus, microwaves can accelerate the rate of reaction, 

provide improved yields and greater purity, uniform and 

selective heating with energy-saving, attain higher reproduc-

ibility of reactions and help in developing convenient and 

cleaner green [62, 63]
 
synthetic processes. The main benefits 

of microwave-assisted organic synthesis are:-  

(a) Faster reaction: Based on experimental results it was 

noticed that the rates of a microwave-assisted chemical reac-

tion can be as much as 1000-fold faster than conventional 

heating methods. The microwave can use higher tempera-

tures compared to conventional heating systems, and thus the 

reactions are finished in a few minutes rather than hours. 

(b) Improved yield and higher purity: Generally prod-

ucts were obtained in higher yield using microwave irradia-

tion and less formation of side products was observed. As a 

result, the purification step was found to be quicker and easi-

er.  

(c) Low processing costs: Conventional methods of or-

ganic synthesis generally require longer heating time, tedious 

apparatus setup, and excessive use of solvents/reagents re-

sulting in higher processing costs. Microwave synthesis is 

believed to be an important approach in the direction of 

green chemistry since this technique is more eco-friendly. 

Because of its ability to couple directly with the reaction 

molecules and by passing thermal conductivity leading to a 

rapid rise in the temperature, microwave-assisted synthesis 

generally has low processing costs.  
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(d) Uniform and selective heating: Under the conven-

tional heating condition, the oil bath walls are heated first 

and the solvent afterward. Despite this dispersed heating in 

an oil bath, the difference in temperature between both the 

walls and the solvent is always apparent. Only the solvent 

and the solute particles are excited under microwave heating 

which leads to uniform heating of solution. Selective heating 

is focused on the concept that different materials respond to 

microwave irradiation differently. Some substances are 

transparent while others are microwave absorbents.  

(e) Greater reproducibility: Due to uniform heating and 

enhanced control of process parameters, reactions performed 

under microwave-assisted heating protocol are more repro-

ducible compared to conventional heating. It is also easy to 

monitor the temperature of the chemical reactions with mi-

crowave heating. 

(f) Energy-saving process: Microwave-assisted heating 

is a highly efficient process and helps in significant energy 

saving. This is mainly because microwaves only heat the 

sample and not the apparatus, and so the energy consumption 

is less. 

(g) Green synthesis: The microwave-assisted reactions 

are cleaner and more environmentally friendly than conven-

tional heating methods. Microwaves directly heat the mole-

cules; hence the use of solvents in the chemical reaction may 

be minimized or excluded. Organic synthesis in the absence 

of solvent, where reagents are absorbed on mineral support, 

has a large prospective since it offers an eco-friendly green 

protocol in synthesis. The use of microwaves has also de-

creased the number of purification steps needed for chemical 

reactions involving toxic-reagents to obtain desired products. 

(h) Small particle size and narrow distribution: Com-

pared to conventional methods, microwave-assisted synthe-

sis yields smaller particle sizes and narrow particle size dis-

tribution. It provides particles with the usual particle size of 

12 nm. Nanostructures with smaller sizes, narrower size dis-

tributions, and a higher degree of crystallization are obtained 

under microwave heating in contrast to conventional oil-bath 

heating. 

Although microwave-assisted organic transformations 

have lots of advantages still it is not free from some demerits 

[64].
 
One of the drawbacks of microwave scale-up technolo-

gy is the insufficient microwave irradiation penetration range 

into the absorbing materials. This means that solvents or 

reagents are heated by convection in the center of the large 

reaction vessel and not by dielectric heating directly in the 

microwave-assisted heating.  The higher tempera-

tures/superheating of the solvent in sealed vessels may facili-

tate the decomposition of the desired products or may lead to 

the formation of a thermodynamically stable product prefer-

ably to the kinetically favored product. The use of micro-

waves as a heating source has limited applicability for mate-

rials that absorb it. Microwaves cannot heat materials that 

are transparent to their radiation, such as sulfur. Improper 

utilization of microwave heating to increase the rate of 

chemical reactions involving radioisotopes can lead to un-

regulated radioactive decay. Some issues were also found 

during the conduct of polar acid-based reactions, with haz-

ardous results, which can harm the polymer vessel used for 

heating. Microwave reactions may also result in uncontrolled 

reactions and cause explosions at high-pressure conditions. 

Though microwave chemistry is presently being used in 

both academic and industrial applications, the effect on the 

pharmaceutical industry [65-67] in particular has contributed 

to the advancement of microwave-assisted organic synthesis 

(MAOS) from a laboratory interest in the 1980s and 1990s to 

a technology now fully adopted. The field has evolved to 

such an extent that almost every pharmaceutical company 

and many academic laboratories are now actively using this 

technology for their research work. 

3. HOMOGENEOUS GOLD CATALYSIS: GENERAL 
APPROACH 

Gold-catalyzed reactions have exhibited several unique 

features. Specifically, with an electron configuration of 

[Xe]4f
14

5d
10

6s
1
 for the gold atom, gold catalysts mainly exist 

in +1 and +3 oxidation states. The high oxidation potential of 

Au(I) to Au(III) permits most Au(I)-catalyzed reactions to 

perform without much precautions to exclude air. The 

reluctance to switch between oxidation states ensures the 

progress of novel modes of catalytic cycles contrary to the 

classical oxidative addition/reductive elimination pathways 

common in late transition metal catalysis. Moreover, gold 

catalysts are remarkably alkynophilic, but not as oxophilic as 

most Lewis acids. Thus, tolerance towards air and moisture 

and the nontoxicity make these catalysts greatly user friendly 

and a premier choice for green chemistry. Also, convenient 

procedures and without the worry of air and moisture, gold-

catalyzed reactions often provide competent access to 

structures of huge diversity and or complexity from much 

simpler starting materials. Furthermore, carbon-gold bonds 

are labile toward protodeauration, but not susceptible to β-

hydride elimination, which often occurs in other transition 

metal-catalyzed reactions, thereby increasing the product 

selectivity. Gold has only one isotope and therefore lacks a 

characteristic isotope pattern in mass spectrometry. The nu-

clear spin of gold is 3/2, but due to very low sensitivity and a 

quadrupole moment, only a few 
79

Au spectra in a highly 

symmetric environment have been reported. The diamagnetic 

character of both gold(I) and gold(III) conveniently allows 

the monitoring of catalytic reactions by NMR. Mössbauer 

spectroscopy can convey information about the oxidation 

state.  

Over the past two decades, homogeneous gold catalysis 

has gained increasing attention, allowing for the substitution 

of unified organic reactions with simpler, selective, and 

chemically feasible alternatives. The fine-tunability of both 

the electronic and steric properties of gold catalysts signifi-

cantly contributed to the development of the research field, 

with widespread uses in total synthesis and asymmetric ca-

talysis. The key benefit of homogeneous catalysis of gold 

was that the precise change of the catalyst structure will im-

pact the mechanism of the reaction in a controlled and pre-

dictable way. Homogeneous gold catalysis has attracted sub-

stantial attention in recent years, and several powerful new 



Microwave-assisted Homogeneous Gold Catalyzed Organic Transformations Current Microwave Chemistry, 2020, Vol. 7, No. 3     169 

 

reaction cascades have been discovered for the rapid con-

struction of molecular architectures, starting from simple key 

precursors. 

Although there are various types of organic reactions 

catalyzed by homogeneous gold catalysts, a mainstream of 

them proceed through some very alike mechanistic steps and 

involve the activation of a π-system of an alkyne or an 

allene, or sometimes even an alkene moiety, thereby 

rendering it susceptible to nucleophilic attack. One of the 

great advantages of using gold catalysis is a kinetically labile 

carbon–gold bond that can be readily cleaved under the 

reaction conditions, thus confirming efficient turnover. As a 

result, these reactions provide an atom-economical entry into 

functionalized cyclic and acyclic scaffolds useful for the 

synthesis of natural and non-natural products under mild 

conditions with excellent chemoselectivity and high 

synthetic efficiency. The metal-π-complex may evolve 

through the usual carbenoid species or also via back-

donation down through a 1,2-shift (hydride, halide, etc.) that 

leads to the formation of a metal–vinylidene complex. A 

general pathway for these transformations is given in 

Scheme 1 [68].
 

4. MICROWAVE-ASSISTED HOMOGENEOUS GOLD 
CATALYSIS 

The combination of homogeneous catalysis and mi-

crowave heating is not only a hot topic but also a research 

domain expected to influence many modern fields of 

chemistry. Transition metal-catalyzed reactions that usu-

ally took hours or days to complete with regular, thermal 

heating can now be carried to full conversion in just se-

conds or minutes with good reproducibility, requiring just 

a fraction of the energy normally required for a regular, 

oil-bath-heated reaction. Additionally, the use of micro-

wave heating is often correlated with the benefits of using 

conventional heating which is not easily achieved. Indeed, 

under the action of microwaves, transition metal-

catalyzed chemistry has been proven much more effective 

than with normal heating in many cases. 

In 2007, Che et al. described an elegant method for the 

preparation of substituted 1,2- dihydro quinolines and quino-

lines efficiently using Au(I) catalyzed tandem hydroamina-

tion- hydroarylation strategy under microwave conditions 

[69]. In this protocol primary anilines react with two equiva-

lents of aliphatic or aryl alkynes in the presence of 5 mol% 

N- heterocyclic carbene gold(I) catalyst, Au(IPr)Cl to pro-

duce 1,2-dihydro quinolines in excellent yields (Scheme 2). 

It has been found that compared to traditional thermal heat-

ing conditions, microwave irradiation shortens the reaction 

time from 12-24h to less than 70 minutes thus proving the 

efficiency and utility of the use of microwave conditions. 

The toleration of various functional groups and broad sub-

strate scopes makes this method elegant. On the other hand, 

the reaction of 2-aminophenone with one equivalent alkyne 

provides 2,4-disubstituted quinolines under similar experi-

mental conditions (Scheme 3). 

 

Scheme 1. Mode of reactivity in homogeneous gold catalysis. 
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Scheme 2. Gold(I)-catalyzed reactions between primary arylamines and alkynes under microwave conditions.  
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Scheme 3. Gold(I)-catalyzed two-component synthesis of quinolines under microwave irradiation. 
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Scheme 4. A plausible mechanism of microwave-assisted gold(I)-catalyzed tandem hydroamination−hydroarylation. 

 

Based on preliminary mechanistic investigations and ana-

lyzing previous works on hydroamination reactions, a plau-

sible mechanism was proposed for the synthesis of 1,2-

dihydro quinolines and 2,4-disubstituted quinolines through 

the gold-catalyzed reaction of anilines and alkynes (Scheme 

4). The process involves Au(I) catalyzed activation of al-

kynes followed by hydroamination of alkynes to generate an 

enamine intermediate which forms ketimine through tautom-

erization. Then, the reaction of enamine or ketimine immedi-

ately reacts with alkynes to form a propargyl amine interme-

diate. The intramolecular hydroarylation of the aforemen-

tioned intermediate produces 1,2-dihydroquinolines. On the 

other hand, when ketimine undergoes a condensation/ annu-

lation reaction it produces 2,4-disubstituted quinoline deriva-

tives. 

Since the π*-orbital of alkenes are higher in energy level 

compared to alkynes, the energy gap between the π*-orbital 

of alkene and HOMO of upcoming nucleophiles is larger 

compared to the energy gap between π*-orbital of alkyne 

and the HOMO of upcoming nucleophiles [70]. For this rea-

son, the addition of nucleophiles to an alkene is more diffi-

cult compared to alkynes. Thus, the lowering of alkene π*-

orbital is necessary to facilitate the nucleophilic addition 

reaction. For this purpose, a robust and highly carbophilic 

Lewis acid is required. Like hydroamination of alkynes, the 

gold catalyst has proved its efficiency for the hydroamina-

tion alkenes which has been well documented in several re-

ports [71, 72]. A pleasant report from Che and co-workers 

described that in presence of a gold catalyst(Au(PR3)Cl) (R= 

Phenyl or Cyclohexyl) in a combination of AgOTf, alkenes 

can react through intramolecular tandem isomerization- hy-

droamination by sulfonamides, aniline derivatives and ben-

zamides under microwave irradiation (Schemes 5 and 6) 

[73]. It has been found that tosylamide or O-substituted ben-

zenesulfonamides were transformed to cyclic sulfonamides 

in excellent yields (95-99%) in the presence of 5 mol% 

Au(PPh3)Cl/AgOTf catalyst in toluene solvent at 100
ο
C dur-

ing 12-24h reaction time. Notably, longer reaction time (72h) 

was required for the intramolecular hydroamination of ali-

phatic alkenes with sulfonamides, but the dramatic accelera-

tion of reaction was observed under microwave irradiation 

where 10-40 mins were required for completion of reactions. 

Also, gold-catalyzed intramolecular hydroamination of ben-

zamides produced the corresponding cyclic products in mod-

erate to good yields(50-90%) during the 13h reaction time at 

100
ο
C. Here also, shortening of reaction time from 30h to 30 

minutes was observed upon the treatment of the reaction 

mixture under microwave irradiation affording cyclic prod-

ucts in 57- 60% isolated yields. Similarly, gold-catalyzed 

intramolecular hydroamination of alkenes with sulfonyl am-

ides provides the products in good yields under microwave 

irradiation for 40 minutes. 

After the success of the aforementioned intramolecular 

hydroamination of alkenes, Che et al. broadened the reaction 

scope of this type of Lewis acid-catalyzed nucleophilic addi-

tion to alkenes from hetero-atom nucleophiles to carbon nu-

cleophiles. Using Au(PPh3)Cl/AgOTf catalytic system, the 

addition of indoles towards alkenes in intramolecular fashion 

was developed (Scheme 7) [74]. The intermolecular hy-

droarylation of aryl alkenes or conjugated dienes with in-

doles was achieved in excellent yields through the reaction at 

the C-3 position of indoles in the presence of 2-5 mol% 

Au(PPh3)Cl/AgOTf under microwave irradiation in 1,2-

dichloroethane affording the desired product in moderate to 

excellent yields (42-90%) compared to low yield and neces-

sity of longer reaction time under conventional heating. In 

the case of substrate allylbenzenes, gold-catalyzed migration 

of the C=C bond takes place and as a result, trans-β-methyl 

styrenes were formed in situ under the experimental condi-

tions which further react with indole derivatives to furnish 

the hydroarylation products. The preliminary mechanistic 

investigation including deuterium labeling experiments rec-

ommends a three steps mechanism that is, firstly π-bond of 

alkene moiety was co-ordinated by the cationic [Au(PPh3)]
+
 

species thus electrophilicity of the alkene was increased by 

lowering the energy of π*-orbital of alkenes. Secondly, the 

nucleophilic addition of indoles to gold activated alkene 

generates organogold(I) intermediate. Now lastly, the proto-

deauration of the formed organogold(I)  intermediates pro-

vides the desired product and releasing the actual catalyst, 
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Scheme 5. Gold catalyzed hydroamination of alkenes under microwave conditions. 
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Scheme 6. Intramolecular hydroamination of amides under microwave conditions. 

 

i.e. cationic [Au(PPh3)]
+
 species for the next catalytic cycle 

(Scheme 8). 

Echavarren et al. reported a significant article about cati-

onic gold(I) catalyzed intramolecular [4 + 2] cycloaddition 

of both alkenyl and aryl-substituted enynes to produce the 

bicyclic and tricyclic compounds, respectively (Scheme 9) 

[75]. Compared to conventional heating, the employment of 

microwave irradiation leads to shortening of the reaction 

times, and provides greater yields and high regioselectivity. 

Intramolecular cycloaddition of 1,8-diene-3-yne derivatives 

through the 5-exo-dig pathway produces hydrindanes. On the 

other hand, under this protocol, 1,6-enynes containing an 

aryl ring provides 2,3,9,9a- tetrahydro-1H- cyclopenta[b] 

naphthalenes through a 5-exo-dig cyclization followed by a 

Friedel-Craft-type ring expansion. Interestingly, in some 

cases, a 6-endo-dig cyclization was observed as a less favor-

able process mostly, whereas this pathway was found to be 

major in a few cases. 

In 2011, Najera et al. reported a comparative study be-

tween gold (I) and silver catalyzed hydroamination of inacti-

vated alkenes and dienes using NH-nucleophiles like sulfon-

amides, anilines, and carbamates under microwave condition 



Microwave-assisted Homogeneous Gold Catalyzed Organic Transformations Current Microwave Chemistry, 2020, Vol. 7, No. 3     173 

 

Au(PPh3)Cl (5 mol%)
AgOTf (5 mol%)

DCE, 5-30 min
MW(43W), 130-140 oC

N
R2

R1
+

Ar

n

N
R2

R1

Ar

N
R2

n

N
R2

R1

or

or

R1

or

or

N

Ph

N
H

N

Ph

OMe

81%

82%

NO2

42%

N
H

NO2

60%

N
H

NO2

83%

N
H

62%

O2N

N
H

NO2

84%

N
Ph

75%

OEt
O

N
H

80%

OBz

O2N

N
H

trace

N

O2N O

N
H

NO2

OMe

90%

N

81%

OMe

 

Scheme 7. Gold-catalyzed hydroarylation of indoles with alkenes under microwave conditions. 
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Scheme 8. Proposed mechanism of gold(I)-catalysed hydroarylation of styrene derivatives with indoles.  

 

(Scheme 10) [76]. This study revealed that gold-catalyzed 

reactions show high turnover compared to silver salts, as 

higher catalyst loading was required to carry out the reaction. 

Terminal alkenes, except styrenes, were found to be unsuita-

ble substrates for the silver catalyzed hydroamination reac-

tion contrary to the gold-catalyzed reaction where the afore-

mentioned substrates would easily provide the desired prod-

ucts in good to excellent yields.  

In 2013, Stockland et al. synthesized various aryl gold 

compounds under microwave conditions and utilized them to 

investigate single-component catalysis for hydrophenoxyla-

tion of a variety of inactivated internal alkynes (Scheme 11) 

[77]. Sterically and electronically diverse phenolic com-

pounds were efficiently added to alkynes in the presence of a 

gold catalyst containing Johnphos or IPr/SIPr ligands under 

either microwave or conventional heating and afforded mod-

erate to excellent yields of the vinyl ethers. Lack of necessity 

of silver salts, acids, or solvent makes this protocol highly 

appreciable to the chemical community. 

Wenzel et al., in 2015, reported a gold-catalyzed, SN
1
-

type reaction of alcohol to directly afford unsymmetrical 

ethers (Scheme 12) and Cbz-protected amines (Scheme 13) 

under microwave conditions [78].
 
The high reproducibility, 

toleration of moisture, and moderate to excellent product 

yields (53–99%) under mild reaction conditions make it 

more attractive for the synthetic community. Interestingly, it 

was observed that no symmetric ether was formed under this 

protocol. Toleration of electronically and structurally diverse 

wide range of alcohols for the etherification reaction shows 

the large scope of this method. Notably, gold-catalyzed in-

termolecular direct amination of alcohols for the synthesis of 

carbamate-protected amines was unprecedented before this 

report. 

Praveen and co-workers have reported practical and high-

ly efficient double condensation reactions between isatin and 

4-hydroxycoumarin in the presence of a gold catalyst under 

microwave irradiation to obtain spirooxyindoles (Scheme 

14) [79]. Improvement of the product yield from 10% to 

79% as well as shortening of the reaction time from 1-2h to 

15 minutes was observed moving from conventional heating 

to utilization of microwave condition in ethanol solvent. 

High yields, clean reaction, short reaction time, and easy 

separation of product from the reaction mixture by simple 

filtration without the necessity of tedious column chromatog-

raphy make this protocol very much attractive. Investigation 

of bioactivity of the prepared spirooxindoles [pyrano- bis-

2H-1- benzopyrans] revealed that some of the compounds 
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Scheme 9. Microwave-assisted gold-catalyzed intramolecular [4 + 2] cycloaddition of alkenyl- and aryl-substituted enynes. 
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Scheme 11. Gold catalyzed hydrophenoxylation of alkynes under microwave conditions. 
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Scheme 12. Gold-catalyzed SN
1
-type reaction of alcohols under microwave conditions. 

 

OHR +

Au(PPh3)Cl (5 mol%)
AgSbF6 (5 mol%)

CH2Cl2, 50oC
60-90 min., MW

NHCbzR

NHCbz

90 min, 87%60 min, 89%

H2NCbz

(1 equiv.) (4 equiv.)

NHCbz

 

Scheme 13. Gold-catalyzed amination of alcohols under microwave conditions. 

 

show strong anti-microbial activity against a wide panel of 

microbial strain. All the product molecules were examined 

for their cytotoxic potency against COLO320 cancer cells 

and found that nitro-compound (shown in dashed box) ex-

hibited significant inhibitory activity with an IC50 value of 

50.0μM. 

Sutherland and Lee et al. reported the ipso-

iododeboronation reactions with N-iodosuccinimide(NIS) in 

the presence and absence of gold catalyst and green solvent, 

dimethyl carbonate under microwave conditions (Scheme 

15) [80]. The gold-catalyzed reaction was highly favored for 

aryl boronic acid substrates which were electron-deficient 

and sterically hindered. On the other hand, the uncatalyzed 

reaction resulting in very poor yields proved the significance 

of the use of a gold catalyst. The gold-catalyzed reaction also 

produced considerably higher yields for iododeboronation of 

electron-rich boronic acid substrates than the uncatalyzed 

procedure. Although, heterocyclic and N-containing aryl 

boronic acids reacted more effectively under uncatalyzed 

reaction conditions for these transformations.   
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Scheme 14. Gold-catalyzed synthesis of spirooxindoles under microwave conditions. 
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Scheme 16: Microwave-assisted gold-mediated radioiododeboronation. 
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Additionally, halogen moieties (Br and Cl) are well toler-

ated under these reaction conditions, which is useful for fur-

ther derivatization. The fast reaction and mild experimental 

conditions of the gold-catalyzed iododeboronation reaction 

were found to be comfortable for the I-labeling method for 

arenas and authors have claimed that this is the earliest ap-

plication to selective radiosynthesis catalyzed by the homo-

geneous gold catalyst. In this protocol, both electron-rich and 

electron-poor aryl boronic acids were efficiently converted to 

the radioiodinated products with excellent radiochemical 

yields (Scheme 16). It is well known that, in nuclear medi-

cine, for drug development and disease diagnosis, radio-

pharmaceuticals containing radioactive iodine in association 

with single-photon emission computed tomography imaging 

perform a vital role. An important radiopharmaceutical, 

namely meta-[
125

I]iodobenzylguanidine ([
125

I]MIBG) used 

for the imaging and therapy of human norepinephrine trans-

porter-expressing tumors [81-83], was prepared in this mi-

crowave-assisted gold-catalyzed iododeboronation reaction 

conditions.  

CONCLUSION AND PERSPECTIVE 

Microwave chemistry is an emerging area of science, 

mainly focusing on the various applications of microwave 

energy to chemical processes. Microwave irradiation has 

enormous potential to provide controlled energy directly to 

the molecules of interest. Over the last few years, the ad-

vancement of microwave chemistry has been witnessed in 

the literature. In near future, it is possible to develop ro-

bust microwave-assisted methods for almost every reac-

tion which needs an external heat source and this article 

represents that the gold-catalyzed reactions can be con-

ducted very efficiently and successfully under microwave 

conditions. The single-mode microwave irradiation heating 

allows for easily adjustable and regulated bulk heating that 

can be done safely and with very low energy consumption. 

The synthetic chemist can enjoy the benefits of the unique 

reactions of carbon-carbon bond formation offered by or-

ganometallic chemistry that enables the reaction to occur in 

seconds or minutes, which is a significant achievement since 

other transition-metal-catalyzed reactions are time-

consuming. 

Gold complexes have proved to be more effective than 

other transition metals in various transformations, leading to 

improved yields and selectivities. They have also shown 

some very particular properties, making possible new mech-

anistic pathways and exhibiting sometimes a distinct reactiv-

ity. The examples described suggest that the combined per-

spective of microwave heating and homogeneous gold catal-

ysis can be an almost synergistic approach, in the sense that 

the combination as such has more potential than its two sepa-

rate sections alone. However, there are also many other cata-

lytic reactions with significant potential for microwaves 

heating. For example, it could be anticipated that growing 

numbers of gold-catalyzed reactions could well respond to 

microwave heating. In the high-speed generation of combi-

natorial libraries, it is already clear that modern automated 

microwave synthesizers have a lot to offer. New research on 

this subject will possibly include an in-depth analysis of the 

interaction of microwaves with materials of various chemical 

natures (solvents, analytics, and structural features of mi-

crowave systems) and work on the effects of microwave’s 

physical properties (frequency and intensity) on chemical 

transformations both in homogeneous and heterogeneous 

systems [84-86]. 
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